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THE CALCULATIONOF PRESSURE ON SLENDER AIRPLANESIN SUBSONICAND
SUPERSONICFLow 1

By MAX. A. HmmT and HAEvhrJ LOMAX

SUMMARY

Undertb a-swnption thal a wing, body, or wing-body eombi-
natbn I’.9slendm orj?ying at ?umrsonic m?+?ody,expre&.I?IMare
given which permit the caikda#iunof pmwure in th-e immediate

vicini$v of the conj@6ralion. The d%u.rbance jield, in both
SUb8071iC (d &“UIMW?Lti fli@, h 8hOWTL to cOllSiSt of tWO-di7TW?L-

tinal distwrbamejdda dwuiing lakm.lly and a longitwdimd
W that depend on tlw 8.treamwi8ejr& of cross+wethud

area. A diecwsaionh do given of couplin98, between l~ng
and thickruxs e$ects, thui n.ecemarily a.rhe aa a resul.$oj tlw
qua.dratio 02pendenc4 of prtxwure on the induced vehmiiy
componen19.

INTRODUCTION

This paper is concerned with the prediction of pressure
distribution on or in the immediate vicinity of a wing, body,
or wing-body combination under conditions in which the
geometric configuration is slender in the flight direction or
is flying at near sonic velocity. The material to be presented
is thus associated with the rather extensive group of re-
sults that belong to what is usually referred to aa slender-
wing theory. The basic assumptions and methods can be
found in publications by Munk, R. T. Jones, sad Ward
(refs. 1, 2, and 3) ‘ and a discussion of the applicability of
the methods to the prediction of loading on slender wings at
sonic flight speeds has been given in reference 5. In refer-
ence 2, attention was direeted toward the calculation of load
distributions over wings in subsonic and supersonic flight
and reference 3 was devoted to the considwation of super-
sonic flight velocities. It is therefore of interest to iuvedi-
gde further the eilects attributable to thickness on wings
and wing-body combinations at both subsonic and super-
sonic flight speeds. Such investigations lead to valid ap-
proximations of interference effects and also indicah the way
in which thickn= and lifting eilects can produce couplings
in the calculations of pressurw induced in the flow field.

ANALYSIS

It is proposed to take the basic solutions of the linearized
partial differential equations governing three-dimensional
compressible flow and to obtain a simplification of the ex-
pressions by restricting attention to the induced field in the
immediate vicinity of slender airplanes or @ssiles. These
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simplified expressions contain solutions used previously to
study the forces and moments on lifting wings and bodies.
In addition, however, they can be used to evaluate the
iirst-order thiclmws effects on the pressure in the vicinity of
the wing and body.

Consider, first, the construction of a weakly disturbed
flow field. Let a uniform stream flow in the direction of
the positive z axis of a Carte9ian coordinate system, as in
figure 1. Immerse in the stream, which has a velocity Z70
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FIGURE I.-orientation of coordinate system and perturbation
velooitia.

and a Mach number A& a slender wing-body shape the
surface of which is inched at a small angle to the free-
stream direction. This angle of inclination must be small

,
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enough so that nearly everywhere in the fluid the magnitude
of the perturbation velocity vector divided by the speed of
the free strwun is much less than one; that is,

. . .
@w%Pa

Uo”” -“ - “ ‘“”
(la).-.

Moreover, large supersonic Mach numbers are to be avoided
and as a measure of this condition the inequality

M7,1U’+P+-UP ~

u,
(lb)

is imposed. .
Consider, next, the linearized partial deferential equation

governing weakly disturbed isentropic fluid flow. Ii tbrms
of the perturbation velocity potential q(z, y, z), the lowest
order approximation consistent with inequalities (la)’ and
(lb) is .-

(1.—I4O’%%Z+%+$%=O (2)

where the subscripts” denote partial differentiation with
respect to the indicated variable.

Consider, iimdly, the expression for the pressure coefficient
that is again consistent to the lowest order with inequalities
(la) and (lb). By expanding the pr~ure-velocity relation
for steady isentropic flow and neglecting Mgher+rder terms,
one finds

G=f=” g (y~;:,+~+~
ij PCD09

——--
whwe p and p are pressure and density, respectively, and
the subscript O refers to conditions in the free stream. It
follows from inequalitks (la) and (lb) that pressure co-
efficient can be expressed in the form

(3)

Equation (3) is the simplest general expression for pressure
coticient that is still entirely consistent with the assump-
tions basic to the development of equation (2).

Special solutions applying to problems of the class indi-
cated can be obtained by appropriate simplification of general
solutions to equation (2). Such a procedure will be discussed
in the next section. The pressure coefficient is then deter-
mined by substituting these results into equation (3). The
simplifications that can be made in evaluating the preswre
on the surface of the airplane will also be discussed.

TEE REDUCED SOLUTIONS

Subsmioo—~ it applies to subsonic flow, equation (2)
can be written in its normalized form as

9=+ $?w+%=o (4)

The analysis of equation (4) can be interpreted as applying
to the condition d40=0 but one can extend the solntionE
throughout the subsonic Mach number range by. applying
the Prandtl-Glau&rtrule.

A well-knowm solution to equation (4), resulting from an
application of Green’s ‘theorem, is given by the expression

-.

where d~l is he ele’rne&if s&face area oh the airplane or its
vo;t& “~ake, r equals ~(y—yl)s+ (z—Zl)z, and b/bn’ is the
derivative normal to the surface S1. When this solution is
applied to boundary-value problems for slenderconiigumtions
it can be simplified considerably.

For example, when the airplane shapo is slender it is
justifiable to introduce simpliihtions in the form of the
derivative Z)/3n’ and the diilerential area dS1. The opmntor
b/ZW’ ~n be expressed as

where n~,%, and w are the direction cosines between a normal
to the surface&and the z, y, and z axez, respectively. The
dii7erentialarea dS, can be expressed m

,“.’
dsl(kcl ‘ “

4=7
where C& is a differential length along the surfmm in a yz
plane. If the shape is slender,nl is smrdland cm be neglectml
relative to either unity or ~--

By means .of these simplifications, equation (6) can be
approximated by the expression (from now on, the configura-
tion will be considered to lie rdong.the positive ZIaxis with its
foremost part in the ZI=O plarie)

,,

where 3/bn”repree&.s n@/@+@/&, ‘the normal derivative
to a seition in the yz plane, ands is the curve bounding this
section.

H the wing-body configuration is slende’r, the ratio
[r/(z–zI)]’ is small over &nost all of its surface nnd vortex
wake provided the point x, y, z is on or in the vicinity of these
S-urfacw”. This im@ea the appro&nation ,—

-J(&-z,)’+#=~z-zll (7).,

can be used. to simplify further equation (6). However,
since, in the limiting case of r=O, equation (6) is o divergent
intagral, it is necessary to introduce this approximation
witi” some care.

First let us consider in equation (6) only the portion of the
integral multiplying @pn. Designating this by ~~(z,v,z)
one can readily show

@ich, with the approximation given by equation (7), re-
duws b .. .
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Since this can be written

it simplifies to

(9)

The other term in equation (6) requires more attention.
Designating the velocity potential induced by this term as
q~,we can write

The logarithm in the integrand separates into two parta and
if tlm term containing ln(l/r) is further simplified, in the
manner used to derive equation (9) from equation (8), one has

To the second term in equation (11) we no-iv apply the
mean-value theorem. F@ divide 8, the curve bounding the
airplfbne’s normal cross-sectional area, into >j so that

bV/bn has the same sign everywhere along eaoh S’j. This ha
a clermphysical interpretation, for, since p is the perturbation
velocity potential, to the order of our approximations

(12)

where S, (zJ is the part of the cross-sectional area with its
only exterior boundary along the arc Sj. (Site we are con-
cerned ordy with the rate of change of Sj(z), the internal
boundary is immaterial.) Henee, if bplbn is everywhere
positive along Sf, the surface is everywhere expanding there;
and, conversely, if bp/bn is negative, the surface is con-
tracting.

Using these definitions, we can apply the mean-value
theorem to the second term in equation (11) and write

sapJn[lZ–XIl+J(Z–~J+*G 2r2j d81=Uo~ln [[Z—321+

.&-zl)2+Tjq s;(w)

where ~~=4(Y–YJ2+ (Z–ZJ2 aid Yj, Zj is a PO~t On

(13)

the
surface of the configuration in the xl plane somewhere along
8,. Combining the above results, and applying the Prandtl-
Glwert transformations (11=~~1, x*, Y+3Y, Z+Y3Z)
one can now approximate. equation (5), when it is applied to
the flow field in tlw&n&y oj dender wing-body con.a.thns,
and further, when it is applied to conjigura$ti for which
S’(z) is continuous, and for which S;(*) exists,by the equation”

Notice that the limitation of equation (14) to the vicinity
of slender shapes has, as yet, entered only in the approxima-
tion of equation (8a) by equation (8b), that is, in approxi-
mating the effeet of the @/bn(lnr) (or doublet) term as given
in equation. (14). If equation (14) is applied to the study of
thin, nordifting, uncambered wings, therefore, it is only
limjted by the assumption that S’ (z) is continuous. Further,
if such wings are slender, the position of the point yj, Zj does
not deviate far from zero. Htice, wa “can chose for rj the
value ro, where r02=ti+ ~. Then, since ~S;’(z) =S’’(z),

integrating equation (14) by parts yields

s J
S’(xl)fiwDoS’(z) lnro1 ap lnr ~1—~ ornJ(z_ZJz+@ro9 2~4f(z,y, z)== ~

s
-’(15)

which is the rew.dt presented by Keune in reference 6.
If we continue to study the flow in the vicinity of general

slender shapes, howevar, equation (14) can be further sim-
pliikd by applying the approximation given in expression
(7). In the fit place, if S“(z) is continuous (and, therefore,
vanishes at x= Oand J,1being the total airplane length), the
equation for the potentkd can be approximated everywhere
in the vicini~ of the configuration by the simple expression

w-hereS(z) is the total cross-section~ area in a plane normal
to the free stream and wheres

On the’other hand, if S“(z) has a discontinuity, the approx-
imation given by equation (16) yields a logarithmic discon-
tinuity in the value of bp/bx, that is (see eq. (3)), in the
pressure coeihcient. This discontinuity is spurious. (it does
not exist in solutions given by exact linearized theory) and
it can be avoided by modifying slightly the simplifying
procedure followed above.

Suppose, for emunple, S“(z) his a finite distintinuity ‘
of magnitude AS;’(L) along the arc si in the plane z=L,
so that

{

s:’(x); X<ll
S“(+ (18)

S:’(z) +ASj’(Z,); lI<Z

J Notlm thatw j’,z) fsamlatlonto LaPb’secpmtfonfntwo(thegandz)dfmansions.
Ther dimembnW notapmarOXPlloftlyfn tU9 wrt oftheOJrnPlOt@.wlutfonforP(.T,0, Z)
bntentmmapaamaterwhenmb adaptedh -* bounb a~tIeIL$-

4 Any fntegrablasfnmlerltyfnSW mnIdh treatedbutthemmlysfswasrcsti-fetedforthe
mkoofsiqmdty.
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where S:’ (z) is eveqwhere continuous and A&’ (Q is a
simple step function. Then equation (14) reduces to

Further,

(19)

when z li& betwee-n O and 1, equation (19) can be
written “(sinceS:’ (xl) = —A&’ (11)for ;l>-~

The physical significance of equations (16) and (2o) is
clear. If the second derivative of the area distribution is
continuous, the three-dimensional velocity field induced by
airplanes that are slender is approximated in the vicinity of
their surfaces, by

(1) a velocity field that is independent of the Mach num-
ber and satisfiea the two-dimensional Laplace equation
and boundary conditions in transverse planes

(2) a longitudinal field that depends on the Mach number
and streamtie variation of croswectional area and
is independent of y and z.

If the second derivative of the cross-sectional area is dis-
continuous, part (2) of the above interpretation should be
modi6ed to apply only to the continuous portion of S“ (z)
and additiomd terms, depending on the number and location
of discontinuitiea in S“(z), are included.

Supersonic.-In the case of supemonic flow, the normalized
form of equation (2) becomes

An analysis based on equation (21) applies specifically to the
condition Mt=@ but theseresults can be extended through-
out the supersonic Mach number range by applying the
Prandtl-Glauert rule. Volterra’s solution to equation (21),
(see, e. g., ref. 7, p. 190) which is awdogous to the subsonic
form given in equation (5), is expressible as .

--+LK$%)ho- 27 &

in
~–q+_&&F as, (22)

T

where, as in the subsonic case, dSl is an element of surface
area on the airplane or its vortex sheet and r equals

4(?Y-?A)2+(Z-%)’. In distinction to the subsonic solu-
tions, the area of integration is now the portion of the
airplane and its vortex wake within the forecone from the
point z,y,z and t@v is the derivative along the conormals
rather than the normal.

~Tho rmmmalj forthenormdfa?dformcdthodlfk+mtioleqnatIonjis theveotorthat
m5nf@fr0mchnr@ngtheslgnOfthazcmnponentOfthen0mnaL

If the conormal and differential area are expressed in
terms of the direction cosines and the.application of equation
(22) is limited to slender cmdigurations, nl can again be
neglected relative to unity or ~=. Furthermorej tlm
approximation, similar to expression (7) for the subsonic
case,

J(Z–Z1)’–+SIZ–ZII

is implied. Under these conditions, the potential in the
vicinity of slender shapes flying at supersonic speeds can be
approximated by the equation

gzJ”f ,[ 1
Sy(xl) l’n ‘–xl+ Jfxp’)’+’rj’ &l

(23)

where, again, S’(z) must be continuous. Equation (23)
dii7ersfrom equation (14) only by a factor of 2 ih the second
term and the extent of the xl integration. In the supemonic
case the Z1integration is carried only to z—/3rj, or to z when
Tj can be neglected, since the origimd integration area r in-
cluded only the points in the forecone from x,y,z (these two
differences were compensating in the derivation of the first
integral term). The second term in equation (23) further
simplifies in a manner analogous to that used for the simpli-
fication of equation (14). For example, the expression for
the perturbation potential near a slender configuration hav-
ing a discontinuity in S“(z) along the arc Sj in th~ piano
Z=l~ is giVOllby

(24)

where ~.’ (z) and NJ (11)are defined by equation (18) and
~(z,y,z) is the two-dimensional solution to Laplace’s equw
tion defined by equation (17).

The physical significance of equation (24) is analogous to
that for equation (20). Before proceeding to the next section,
however, two observations regarding these solutions me
worth mentioning. In the first place, notice that if discon-
tinuities in ~;(z) occur on the z axis, as could be the case,
for example, at the nose of a pointed body of revolution or at
the apex of a trianguhm wing, and if one is interested in
evaluating p(z,y,z) only on the object’s surface, the value of
rj for such discontinuitieawould be zero and, if there were no
other discontinuities, equations (20) and (24) would be
correct if the AS;(h) were set equal to zero and N.’ (xl) was
written simply s“ (Zl). In the second place, for the super-
sonic case, only the discontinuities between the nose and tho
plane z, at which the induced velocities are being calculated,
afkct the flow there. Hence, unless one is interested in tho
flow field behind the contlguration, any discontinuity at
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x=1 can’ always be excluded from equation (24). Taking
these observations into rwcount simplifies the treatment of
mm y body-of-revolution and supersonic-wing problems.

THEEEFEEENCECOOEDmATESYSTEMS

Equation (2) was developed speciikally for the case in
which the undisturbed stream at infinity is parallel to the z
axis. A coordinate system so oriented is usually referred to
as the wind-axes system. (See @ 2.) When the conf@ra-

-X

+

/ .a

,/
y .“ U.

\

z

[

Y

Body axes

(a)

tzwLJo\ ,,. a
Y

/“’ Wind axes

(a) Body axes.
(b) Wind axes

FIGURE 2.—Illustration of wind- and body-axes systems.

tion is tilted with respect to the free-stream vector, however,
it is often easier to study the boundary-value problem with
axis placed along the winter line of the fuselage. Such a
coordinate system is usually referred to as the body axes.

Obviously the wind and body axes di.tier significantly
only by rotations about the y and z axes. When MO is
zero, equation (2) is invariant to such a rotation, but for
vrdues of ikiognmter than zero this is no longer true. How-
ever, when MO is greater than zero, equation (2) represents
the governing differential equation only to a certain order,
and, if the magnitude of the rotation is similar to that of the
parameters by which the equation is ordered, i! is, in this
sense, still invariant to rotations about all three ax~ for
both subsonic and supersonic Mach numbers. Thus equa-
tion (2) is to the lowest order the govern.@ partial differ-
ential equation for both wind and body axes, provided the
airplane is slender and the angles of attack and sideslip
are small.

Although the partial differential equation is invariant
with respect to a small rotation of the coordinate system,
the boundary conditions and expression for the pressure
coefficient in terms of the perturbation velocities are not.

The following will contain a discussion of the boundary con-
ditions and the pressure and loading coefbients with
reference to a body axes system.

THZ BODNDAEY CONDITIONS

The boundary conditions require that the gradient of the
total velocity potential evaluated i.niinitely far from the
aircraft be consistent with a uniform free stream there (the
direction of which depends on the orientation of the coordi-
nate system) and when evaluated normal to and on the
surface of the airplane itself be zero. Let @(z,y,z) denote
total velocity potential, p(z,y,z) perturbation velocity poten-
tial, and refer the analysis to body axes in a free stream.
If the orientation of the free-stream velocity vector b the
system of axea is tied by the angles a and ‘Y as shown in
figure 2, one can write

@(z,y,z) = uo(~ COSczCOS 7+Y Sh 7+2 COSY Sh CY)+dWjZ)

such that on the aircraft surface

nl, W, and ~ again being the direction cosines of a normal
to the airplane surface with respect to the x, y, and z axes,
respectively. By the assumptions basic to the present
theory, the latter equation reduces to

Z70(7Ll+-7Z-iY+~a)+A~ 4&?/,.4=o (25)

where, as before, n is the normal to the curve bounding o
cross section in the yz plane.

Equation (25), which applies to arbitrary slender shapes,
ean be simplified for many specitlc problems. Consider
now three types of eon.figurations that lead to such simpli-
fications: fit, a surface, such as a wing, which deviates

‘only slightly from a plane; second, a surface which forms a
body of revolution; and, third, a surface which is a com-
bination of the above two.

planar systems,—Let li(@ be the ‘distance a surface
deviates from the z=O plane, and .s be local semi-span.
(See @. 3(a).) Assume that a/(ok/dr)<<1 holds; then
furthermore, if the inequality (M/?@/(d@kc) <<1 is satis-
fied, it is consistent with the previous approximations to
neglect the ~ component of the normal along the wing sur-
face and to project the veloci~ vector represented by the
resulting verticsil derivative to the upper or lower surface
of the z= Oplane. In this way equation (25) beeomcs

r)U0(nl+nsa)+n3 # .-.=O

and, since n&= —W@c, the boundary conditions for planar
problems 8 are expressed by the equation

c’)F: =–UOa+UO #
;-0

(26)

eGrtaiII@rLSISYSt8DWSC@ssthe dOITII W@ IW@’O nloro tbsn 0110Plan8blltthe
conmptaamwsentidly the ssme ed thcms p-ted W
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(a) Plu’willgs.
~) Bodies of revolution.

(c) Wing-body combinations.
FIGURE 3.—TypE9 of cofigurationa for whfoh boundary-value

- problems are disoused.

Bodies of revolution.-Let R be the radius of a body of
qevolution. (See &g.3(b).) If 19is measured from the z axis
in the w plane and Y is set equal to zero, the relations

-d?/ok“=4wm@”-$$‘=JIRXW’ ‘Os6
together with equation (25), give for the normal derivative
on the surface of the body

ap”()
,.

GB
=Uo g –Uoa C08e (27)

which is the simplitledexpression of the boundaW conditions
pertaining to bodies of revolution.

Interference effeots.-Consider, finally, surfaces that are
a combination of the above two as, for example, the one
shown in figure 3 (c).

“The rather”obvious extension of the above concepts is to
apply equation (26) over the winged portion of tho con-
figuration and equation (27) over the body. It is then
necessary, however, to consider therelative magnitudes of tlm
terms hhpx, oh/oZz,o?tldzand dR/dz,since they appcm in the
solutions in various combinations: If the winged portion
is to be treated as a planar problem, the magnitude of
hh/Zkvmust be small enough to be neglected in comparison
to the leading- and trailing-edge slopes, ds/dx and dt/dx,
But this does not imply that hh/tkvcan be neglwted in com-
parison to dR/dx or that dR/ok can be neglected in com-
parison to eider dsldx or &/dx. The latter approximations
will not, in general, be made.

TEEPRESSURECOEPPI~ENT

The expression for the pressure coefficient given by
equation (3) is written in terms of velocity components
that are referred to the wind axes. Its re-expression in
terms of velocities referred to the body axes is readily
determined. For the orientation shown in figure 2 (a), the
equation becomes

cp=————~, (W+yw+w.)-+ [W’+PZq (28)

Equation (28) can be used, in general, to evaluate the prea-
snre in a perturbation velocity field that is referred to tho
body axes. If the interest is limitid to the pressure on tho
surface of the aircraft, however, certain simplifications can
be made. For example, consider the configuration illus-
tited in figure 3 (c) consisting of a sweptback wing mountod
on a body of revolution. For simplici~, let 7= O.
the boundary conditions given by equationa (26)
one can show that on the surface of the wing

“,=-[%+(%)1..+2-(3’

Applying
and (27) ,

(29cL)

and Orithe surface of the body

c.=-[%+~(u”ashe-+’’)l.+d-(%~‘20b)
These solutions can be simplified further by considering the

detailed nature of the perturbation veloci~ field induced by
shapes such as that shown in figure 3 (c). For example, if
S’(x) is continuous, the results given by equations (20) and
(24) can be expressed in the form

$o(z,y,z)= @(zy,z) +A(z) (30),

where the expression for A(z) depends on whether the speed
is subsonic or supersonic. Further, for the particular con-
figurations being considered, the expression for q@pJ,z) con
be w+tten in the general form

P@,wz)= wa(t,%~,v,z)~ w(~j~)~;!l,z)+% wd(tj~,~;tij@
(31)’

since the dependency on z can enter only through the bound-
ary conditions which, in turn, are speciiied by the body
rwlius Ii(z), the wing thiclmess, h(z,y), and the lateraL
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distances from the center line to the trailing edge and leading
edge, t(z) and s(z), respectively. The term apa will be re-
ferred to as the potential due to angle of attack, since it
vanishes when the angle of attack vanishes and increaa~
linearly with increasing a; the term (M@r)p,+ (d12/a%)q.
will be referred to as the potential due to thiclmess, since it.
exists when the angle of attack is zero, does not change with
angl&f-attack change, and vanishes when the thicknesses
of tho wing and body do not vary with z.

By breaking ~ down into its component parts as ‘in
equation (31), it has been ordered in that the magnitudes of
the terms on the right-hand side of equation (31) are con-
trolled by the codicients of the p’s, and the derivatives of
~WPbj ~d ~. ~th r~pect ~ 8, L R, Y, ~d z ~ ~ be wn-
sidered equal. Since a and M/& are negligible relative to
dt/dx rmd &/& (as was pointed out in the discussion of the
boundary conditions for interference problems), equations
(29a) rmd (29b) can be written: “
on the surface of the wing

and on the surface of the body

If the body is a cylinder so that its radius does not vary
with z, the pressure coe5cient reduces to

Cp=[-w.
LOADING COEFFICIENT

.

By definition the loading coefficient is

‘p c’k- (my+ ,

(33)

(34)

where the subscripts L and U refer to the upper and lower
surfaces of the airplane, respectively. It is immediately
apparent from an inspection of equations (34) and (3o) that
tho loading is not affected by A(z). Hence, the lift, pitching
moment, rolling moment, and induced drag for slender
sh~pes having a continuous variation of S“ (z) can all be
expressed ontimly in terms of w4r,y,z).

Consider again the type of shapck represented in iigure
3(c) and let there be no &continuities in S“ (z). The
velocity potential w for such a class of configurations has
been expressed in equation (31) as the sum of three poten-
tials: on~ due to angle of attack, one due te the thiclmess of
tho wing, and one due to the thickmw of the body. It is
now useful to remark that pa has odd symmetry with refer-
ence to the z=O plane and w and P. have even symmetq.
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Placing equations (32a) and (32b) int-b equation (34) and
tiing these properties, one finds

(%).in.=%[’*+&%’c%%)l=o‘35a)
and

(%)w=w%+di%x%%)]. ‘35b)
where A i.ndioak the difference between a quantity on
vertically opposed points of the upper and lower surfaca of
the airplane.

It is apparent from the last two equations that, in general,
the angle-of-attack and thickness solutions have a coupl@g
effect on the loading coefficient and therefore their c&tribu-
tion to the load distribution cannot be treated separately.
It is also important to notice the two special cases in which
the coupling effects vanish; namely, a body of revolution
without wings, and an airplane with a cylindrical body
between the foremost and rearmost extent of the wing. In
the former case the term Z)PJM is zero and in the latter
dR/dx is zero. In both these cases the equation for the
loading coeilicient is

(36)

TEE TOTAL LIPT

Total lift can be obtained, of course, by integrat@ the
loading coefficient over the aimraft surface. A much simpler
way of finding the lift, however, can be derived from n
momentum balance. Thus, by momentum considerations

+
it is possible to show that the vectorial force F on a body
inside a control surface S is given by the surface integral

F=–
SS

~ (p-p&iF– JJP(i@[id
wh&e vector notation is used, the Osubscript indicates free-
stream conditions, p &d p are the local static pressure and

+
density, and T~is the local v~ocity vector. Let the surface
S be a cylinder of infinite radius and two yz planes closing the
cylinder be located infinitely far ahead of and behind the
airplane. Then~thelift force is given to the lowest order by

SS
L=F.=– m “ [Pw~o+u)k=co dydz—. —. .-

.
which reduces to

SS
L=–flo m “ (w)... dydz.

—m—m

This can be simplified &co w=bplbz and (AP)... is the same
as the jump in the potential evriluatedat the airplane trailing
edge. Thus the expression for lift becomes

JL=tio (A&E dy
$lmn

(37)
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Equation (37) applies to all slender shapes. In special
crisesrepresented by figure 3 (c), thiclmesseilects always have
even symmetry with respect to the z=O plane, and it follows
that the total lift and the vortex distribution in the wake of
such conjurations are aflected only by the part of the poten-
tial due to angle of attack, even though the detailed load
distribution depends upon both thickness and angle-of-attack
solutions.

EXAMPLES
PBZS-SUZEONATRIANGULARWINGWITH~C CROSSSE~ON

It is of intereat to calculate, by equation (24), the pressure
on nonlifting wings of triangular plan form and elliptic cross
section flying at supersonic speeds, since examples of this
type have been solved without restriction to slender-wing
theory. It is proposed, therefore, to study two casea given
tit by Squire (ref. S) and then to compare the analytical
results.

Let the wing be placed at zero angle of attack in a super-
sonic free stream of Mach number MO. Consider fit the
thickness distribution for which the ordinate of the upper
surface is

h’(z,?j=—2;4==7 (38)

where h is the root chord, t is wing thiclcmss at x=cO, and m
is the tangent of the semiapex angle of the plan form. The
flow is supemonic, so it is unnecessary to consider closure.

It follows from equation (38) that the elliptic section in the
plane X=X1 has major and minor semiaxes equal to nw
and tzl/2a respectively. The cross-sectional area and the
surface slope me, therefore,

Since attention is cofied to symmetric nonhfting wings,
the boundary conditions are planar and are expressed by
equation (26) for a=O. Further, the solution is given in
terms of these boundary values by equation (23) wherein
@@w).-o bemm~ U@h~~) and (AP).-o is zero by wm-
metry. Let us first study the flow on the surface of the wing.’
Then, although S’(z) is discontinuous at the origii, we can
still write the equation for q (x, y, O) in the form (see the
discussion succeeding equation (24))

Since

J

I = tmx lnly—ylldyl mtz mz.
G -M% ~1m%Y—y12=#n~’ IYI < mz

the expression for perturbation potential becomes

From equation (32a,), wherein dR/dx is, of course, zero
since there is no body, the pressure coefficient on the wing
is

c~=w%r’); “’<mz (39)

Hence, the pressure distribution on tho wing is uniform.
Analysis not limited by the assumption of slenclemuwyields
for pressure coefficimt on the wing

where K and E are complete elliptic integrals with modulus
R. s~~ for values of tie mod~us n~ on~ the
asymptotic relations

apply, the pressure coefficient in slender-wing theory is soon
to be-a first-order approximation.

II one is interested in the pressure cooficient in the z= O
plane but off (although still in the vicinity of) tho wing, tho
discontinuity in S“ (z) rd the origin should bo consiclewl.
In such a case, since AS’’(0) is dm/c.o and S:’(x) is zero,
equation (24) becomes

Since

one can show the expression for the pressu.mcodiiciont off,
but in the plane of, the wing k

Ffotice that the pressurehas a square-root singularity along
the wing leading edges, a result consistent with &o react
linem!ized-theory solution. The pressure along tho Mach
cone from the wing apex, which is zero according ta linearized
theory, is not zero according to equation (4o) but its magni-
tude is of the order @m)* which, in keeping with tho assump-
tions of slender-airplane theory, is negligible.

Squire has also considered the wing with ordinates given by

(41)

The lateral section is again elliptic, with semimajor and
semiminor axes equal to mx and f&/2cOg. Cross-sectional
area and surface slope are, respectively,

By direct integration it can be shown that on the wing

(42)
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kmlysis not limited to slender wings yields the expression

c,= ~,(l:t;,m~ [(3–@n’) K–(4–2#’m2)~

and again the res@s are in agreement if higher-rder tams
in pm am neglected.

A study of generalized conical flow fields in linearized
supersonic them-y reveals that the linear pressure distribu-
tion in the above problem can also be obtained on a wing
with thickness specified by the relation

~W)=$$cosh-’ ~

where ii is a constant that can be related to the maximum
thiclmess ratio (attained along the line mx/y= 1.31) of the
wing. Tlm cross-sectional area md surface slope are,
respectively,

and pressure coefficient on the wing is

Cp=’hxG”&-’)
Tho latter mprcssion agrees to the first order in #m with the
general linearized solution for such a wing presented in
mfercnco 9. Slender-wing theory thus retains the property
of the more general linear theory in that a given pressure
distribution does not necessarily yield a unique thicluwas
distribution.

SUPERSONICDRAG OF WINGSAT ZEROINCIDENCE

The general e.spressionfor the supersonic drag of a slender
aerodynamic shape hnabeen derived by Ward (ref. 3) through
the use of momentum methods. It is also possible to obtain
these results by direct integration of the product of pressure
and surface slope over the specified surface; the analysis,
however, requires rather careful attention tQ orders of inte-
gration, when planar problems are involved. Consider, for
example, the drag of a wing at zero incidence and with a
specified thiclmess distribution z= +h(z, Y). The drsg of
the wing is repressible in the form

(43)

whore the first term includes possible contributions to the
drag that result from a finite leading-edge radius of curva-
ture. From reference 10, this drag per unit of span is, in
slender-wing theory,

(44)

where rmis the radius of curvature normal to the wing
Icading edge and 8 is the local se.mispan. If the ordinate of
the wing, in the vicinity of the leading edge, is

ZU=f(8,y)~

equation (44) becomes

dill. j’(s 8) G%2()—..*+- ~
dy

Assuming the wing is pointed and the only &scontinui@”
in the interval OSZ<l occurs at the origin, the potmtial-ef
the wing, evaluated in the plane of the wing, is given by

U. ‘ t)zu(z,vl) ~nly_/#y,+ S’(z)ln, ;
@,y,Q)=;

J -8 ax n-

Uo’n
J

~ o s (Z,)l?z’(z-m)d% (45)

and, since pressure
proportional to the

coefficient in the plansr cnse is directly
s@amwise gradient of p, the contribu-

tion of each of the terms on the @jh&hand side of equation
(45) can be calculated separately in equation (43). The
second and third terms offer no difficulty but simplification
of the expression resulting from the first term necessitates
an inversion of order of integ~ation and, if the leading edge
has a finite radius of curvature, such an inversion cannot be
carried out in the conventional manner. However, a method
by means of which such an inversion can be carried out is
presented in reference 11. Thus, set

where
f

refem to the “finite part” of the integral 7and the

notation
SS

dy dyl signifies that the yl integration must be

performed first. Then if

it can ,be sho& that
Z-’dx’()1,–1,=~ ~ f’(s,s)

Detailed analysis reveals that the residual tarm (i. e., the
value of 11—lJ yields a drag component that is equal in
magnitude but opposite in sign to Dd.

The final expression for the drag of the wing is then

s’(l)’
J~ h ~++ S(l) ‘ S“(z,) h (z-xl) dxl–

HJ’’(x)?r 0
S“’(2’1)hl’lz-zlldzl (46)

As a particuk example, consider the wing-like surfaca of
triangular plan form (ref. 8) which results from a combina-
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tion of the surfrwcsspecified in equations (28) and (41) and
has ordinates given by the expression

L(Z, Y)=* (co-z) &a’&-# (47)

This wing has rounded leading edges and a finite trailing-
edge angle, and hm equation (46) its drag coefficient based
on wing area is found to be

“=-2’+1(’+’”%9
.

(48)

‘It M apparerit from equation (46) that, for the type of wing
considered, wing drag varies with Mach number so long as
the streamwise gradient of area is iinite at the rear of the
wing; conversely, there ie no dependence on Mach number
when the gradient of area vanishes there. For example, a
wing with an elliptic plan form and biconvex sections satisfies
the latter condition, and its drag coeffi~ient based on wing
men is

(49)

where t is total maximum thickness, a is the semiaxis of the
elliptic plan form in the stream direction, and b is the semi-
axis measured normal to the stream direction.

A comparison between the values of c= given by slender-
airplane theory for the Squire wing (eq. (48)) and the elliptic
lens (eq. (49)) and the e.;act thin-airfoil-theory values s for
the same wings is shown in figure 4.
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FIGURE4.—Comparison of slender-airplane theory with exact thin-
airfoil theory results for two wings~ su~erso.nio ilkht.

teristics. An essential feature of Jones’ results involves
the use of combined flow fields that are obtained by super-
imposing the disturbance fields in forward and rovend
motions; So long as the governing equations of flow mo
linear, it is powible to establish reciprocity relations botwmn
the induced fields of arbitrarily situated sources and doublets
in combined flow fields. Conditions for miniinti. drag
under imposed restrictions”are then expressed in terms of thg
pr~ure induced in the superimposed fields. For example,
it is found that if the thickness distribution for a synmmtrical
nordifting wing yields a spechied volume, then drag is a
minimum if the thickness is distributed in such a way that
the pressure gradient in the combined field remains constant
over the plan form of the wing. The application of this
condition to a slender wing having a continuous value of
S’(z) everywhere a..cept at the origin is simple, since from
equation (24) the perturbation potential in tho two direc-
tions of flow can be written explicitly. In the plane of the
-iving,the forward flow yields

and the reverse flow yields

J
‘0 ‘S’’(xl) h ~bA*lnly—YlldVl~= ~P,(Z,Y,O=* _’ bz

J
2(X1—4&*

where 1 is the streamwise length of the
semispah. Since

ap, avr—= ——
&an

wing and b is loud

the perturbation potential #Z in the combined field

J
‘IX–XII &,–U. ‘s/ f(z,) in ~

$%(z,y,O)=- o

and it follows directly that if S’ (0)=S’ (1)=0,
coefficient in the combined field is

a

is

pressure

(50)

In the case of thiclmess distribution with given volume, Opz
is a linear function in z and equation (5o) is precisely the
same integral equation that arises in the determination of
thickness distribution with given volume for a slender body
of revolution in superonic flight (refs. 14, 16, and 16). The
same chordwise distribution of area therefore e.sists for
wings and bodies of revolution under the given conditions,
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